

The United Republic of Tanzania

THE EXECUTIVE SUMMARY OF POWER SYSTEM MASTER PLAN 2012 UPDATE

Ministry of Energy and Minerals

May 2013

CHAPTER 1	1
INTRODUCTION	1
Purpose and Scope	1
CHAPTER 2	2
POWER DEMAND FORECAST	2
Forecast Approach and Methodology	2
Forecast Results: Figure 0d:Econometrics forecasts – as sum of the three	categories and as global
Trend of Energy Share per Customer Tariff Category	
Comparison of Trend Analysis and Econometric Analysis	
CHAPTER 3	10
UENERATION FLAN	10
Hudronower Projects	10
Thermal Power Projects	10
Renewable Projects	
Geothermal	
Gas Availability	
Coal Resources	
Plan Strategies	
Projects Considered in the Short-Term Plan	
Generation Plan Results	24
Development of Comparative Expansion Plans (High, Base and Low Case)	24
CHAPTER 4	
TRANSMISSION PLAN	
Drivers for grid development	27
Transmission planning criteria	
System operations challenges	
Development of new interconnectors	29
Costs	29
DISTRIBUTION SYSTEM PLANNING	
CHAPTER 5	
ECONOMIC AND FINANCIAL ANALYSIS	
Introduction	
Financial Analysis	
Impact of financing of capital expenditures	
Long run marginal cost	
Economics of interconnecting the isolated regions	40

Table of Contents

CONCLUSION AND POLICY RECOMMENDATIONS	42
Conclusion	42
General Recommendations	42
Specific Recommendations	43

List of Tables

	~
Table 2-1: General Assumptions	2
Table 2-2: Selection of Anticipated Major loads in Tanzania	3
Table 2-3: Detailed Forecast Results	5
Table 2-4: Regional Peak Demand Forecast	6
Table 2-5: Demand, Generation Forecasts	7
Table 2-6: Sales Forecast (GWh) by Econometric Method	11
Table 2-7: Trend of Electricity Share per Customer Tariff Category	13
Table 2-8: Forecast Comparison: Econometric-Global vs Trend-Total in GWh	14
Table 3-1: Planning Criteria	16
Table 3-2: Lead-Times on Hydropower Projects	17
Table 3-3: Lead-Times on Thermal Projects	18
Table 3-4: Natural Gas Utilization-Existing/committed Plants	20
Table 3-5: Coal Resources Utilization for future generation	21
Table 3-6: Power Generation Projects for Short - Term Expansion Plan	22
Table 5-1: Short Term Financing Requirement (2013 – 2017)	37
Table 5-2: Summary of short term financing requirement (2013 - 2017)	37
Table 5-3: Breakdown of Capital Costs	38
Table 5-4: Marginal cost (\$ per kWh)	40
Table 5-5: Isolated Load Centers & Feasibility of Connection to the Tanzania Grid	40

List of Figures

Figure 2- 1: Electricity Sales Forecast: 2011 - 2035	8
Figure 2- 2: Gross Generation Forecast: 2011 - 2035	8
Figure 2- 3: Peak Demand Forecast: 2011 - 2035	
Figure 2- 4 ⁻ Econometric Forecast: 2011 - 2035	11
Figure 2- 5' Econometrics forecasts: Scenarios	14
iguro 2 ° Deciminatios forecusts. Secharios	

Figure 4-	1: Existing Transmission Network	26
Figure 4-	2: Load Flow	32

ACKNOWLEDGEMENT

The 2012 update to the PSMP was carried out by a Technical Team composed of members from Ministry of Energy and Minerals (MEM), President's Office, Planning Commission (POPC), Ministry of Finance (MoF), National Bureau of Statistics (NBS), Rural Energy Agency (REA), Tanzania Electric Supply Company (TANESCO), Tanzania Petroleum Development Corporation (TPDC) and Energy and Water Utilities Regulatory Authority (EWURA). The work was carried out during the months of September to November 2012.

Members and their institutions are:

- 1. Juma F. Mkobya MEM
- 2. Oscar Kashaigili MEM
- 3. Lusajo K. Mwakaliku MEM
- 4. Mbayani Y. Saruni MoF
- 5. Omary H. Juma POPC
- 6. Rustis S. Bernad NBS
- 7. John I. Kabadi TANESCO
- 8. Lebbi M. Changullah TANESCO
- 9. Ephata J. Ole-Lolubo TANESCO
- 10. Hieromini I. Shirima TANESCO
- 11. Fokas M. Daniel TANESCO
- 12. Abdallah M. Chikoyo TANESCO
- 13. Elineema N.K. Mkumbo REA
- 14. Lwaga A. Kibona TPDC
- 15. Godfrey H. Chibulunje EWURA

The Team wishes to acknowledge the support extended to them by Permanent Secretary, Ministry of Energy and Minerals, Mr. Eliakim C. Maswi; Commissioner for Energy and Petroleum Affairs Eng. Hosea Mbise, Assistant Commissioner for Energy Development, Mr. James Andilile; and Assistant Commissioner for Electricity Eng. Innocent Luoga for their close guidance and direction.

CHAPTER 1

INTRODUCTION

Purpose and Scope

The 2012 Power System Master Plan (PSMP) update accommodates recent development in the economy and the desire by the government to accelerate economic growth through the Vision 2025, MKUKUTA and the Five Year Development Plan (FYDP). The FYDP targets to attain low cost energy service that will allow more inflow of foreign direct investment (FDIs). It also targets to increase per capita electricity consumption from 81kWh in 2011/12 to 200kWh by 2015/16 through increased generation capacity alongside accelerated electrification program.

The overall objective of the 2012 Update is to re-assess short-term (2013 - 2017), mid-term (2018 - 2023) and long term (2024 - 2035), generation; transmission plans requirements and the need for connecting presently off-grid regions, options for power exchanges with neighbouring countries and increased supply of reliable power. While the short-term plan requires immediate decision and actions, the mid – to longer terms plan require coordinated planning, project development studies which ensures that future supply utilises the least cost projects, consistent with sound planning criteria and addresses national interests.

The report draws inference on specific data items or detailed procedures in the previous 2008 PSMP and the subsequent updates. In 2008, the Government of Tanzania developed a Power System Master Plan (PSMP) to provide a fundamentally new plan to guide the development of the power system in Tanzania for the next 25 years. The Plan provided a detailed assessment of load demand projections, available options for meeting the demand and requirements for a new higher voltage backbone transmission system for the country.

The Electricity Act, 2008 requires the Plan to be updated annually. The 2009 and subsequent updates were carried out by MEM and TANESCO to review the progress and challenges encountered during its implementation. In order to come up with more inclusive plan that echoes sectoral linkages, the 2012 update broaden up participation to include more actors namely POPC, MoF, TPDC, EWURA, REA and NBS. The 2012 Update covers a review of the following components:

- a) Electricity demand forecast;
- b) Assessment of the short-term, mid-term and long-term generation plan;
- c) The transmission plan that reflect the update in plans for connecting presently isolated regions and increased generation capacities; and
- d) Economic and financial analysis

CHAPTER 2

POWER DEMAND FORECAST

Forecast Approach and Methodology

The 2012 Update of load forecast uses the following methodologies:-

- a) Trend line analysis for regional forecasts to arrive at total country forecasts; and
- b) Econometric analysis as an overall check on the reasonableness of the results obtained using trend-line approach.

Assumptions

There are two groups of assumptions used in this forecast; general and specific assumptions. The general assumptions are summarised in the table below. The demand forecast assesses only the domestic demand although the future regional power trade has been considered under the generation plan section.

High Case - Assumptions	Base Case - Assumptions	Low Case - Assumptions
Base Year Data - 2010	Base Year Data - 2010	Base Year Data - 2010
Target – Achieve 100% of the	Target – Achieve 85% of the High	Target – Achieve 75% of the
250,000 new customers per annum	Case target (212,500)	High Case target (187,500)
for 5years.		
Household size – 8 people	Household size – 8 people	Household size – 8 people
Emerging of high demands of	Emerging of high demands of	Historical growth rates
electricity (industrial survey, open up	electricity (industrial survey, open up	
of economy - Mtwara corridor and	of economy – Mtwara corridor and	
mining activities)	mining activities): Assuming	
	structural breaks – delays and shift of	
	projects	
By 2025 Tanzania is assumed to be a	By 2025 Tanzania is assumed to be a	Business as usual, following
middle income Country according to	middle income Country according to	historical trends
the TDV 2025	the TDV 2025	
• FYDP-I requires 2780 MW	• FYDP-I requires 2780 MW	
by 2015/16	by 2015/16	
• Requires >6700 MW by 2035	• Requires >6700 MW by	
· ·	2035	

Table 2-1: General Assumptions

Specific assumptions

a) Additional electrification: In implementing a five-year program to connect 250,000 new customers per year, two approaches are considered to allocate customers: (1) to allocate new customers on a pro-rata basis across all regions and (2) a similar basis but assuming that more weight would be given to the regions other than Dar es Salaam. Given the already relatively high level of electrification of Dar es Salaam, the second approach is used. After end of the five-year program, historical growth rates are used to project forward up to 2035. The new targets of electrification will be achieved through concerted efforts from many stakeholders like REA, TANESCO, private developers, and the recent government strategy to reduce connection fees as an incentive to attract many electricity customers.

b) **Loads from Extraction of Natural Resources and others:** It is estimated that Tanzania has some 140.2 million tons of gold reserves, 535.8MT of coal, 33.04TCF of gas and abundant reserves of other minerals. In the wake of the liberalization of the economy, the government has been heavily promoting private investment in the natural resource extraction sector. Considerable development are expected in the growth of mining/extraction activities and the position of natural resources in the economy, and it is likely the trend to intensify over the forecast period.

The development of mining activities in a specific region impacts directly on the future power needs in the region, and finally future power needs for the country. The new identified mining loads, their expected power needs, and respective locations are shown in the tabulation below. These are treated explicitly and included as a set of specific assumptions in addition to other identified loads for each regional forecast as indicated in the table below.

Mine	Capacity (MW)	Location	Expected Online
Kabanga - Nickel	32	Kagera	2016
Mibongo - Gold	20	Kigoma	2016
Ntaka Hill - Nickel	30	Lindi	2018
Dangote Cement plant	40	Mtwara	2015
Panda Hill - Gold	5	Mbeya	2016
Buckreef - Gold	8	Geita	2015
Geita - Gold	30	Geita	2015
Mchuchuma – Iron			
Smelter	100	Iringa	2018
Golden Ridge - Gold	7	Shinyanga	2015
Dutwa - Nickel	10	Shinyanga	2015
Bulyanhulu - Gold	20	Shinyanga	2013
Textile Mill	30	Shinyanga	2014
Williamson Diamond	10	Shinyanga	2013
Williamson Diamond	12	Shinyanga	2014
Williamson Diamond	3	Shinyanga	2015
Liquidified Natural Gas			
Power plant(LNG)	100	Mtwara	2018
Expansion of Makonde			
Plateau Water Supply and	-		2017
Sanitation Authority	6	Mtwara	2017
Ikwiriri Sugar factory	4	Lindi	2014
Mtwara Fertilizer Factory	30	Mtwara	2017
Dawasa- Ruvu pumping			
Expansion	12	Coast	2015
Hong Yu Steel (T) Ltd -			
Expansion	34	Coast	2015
Eagle Cement Co. Ltd	20	Coast	2015

Table 2-2: Selection of Anticipated Major loads in Tanzania

c) Losses: The estimate of losses for the forecast period is based on the losses in 2010 and is amounted to 25.0 percent including transmission loss of 5.3 and distribution losses of 19.7 percent as per the Cost of Service Study (COSS - 2010). For the update forecast, the COSS projects reduction of losses up to 21.6 percent by 2015. Thereafter, the projection is assumed a rate of 0.2 percent deduction up to the end of plan. A reasonable and achievable target for

reduction of losses would be to achieve a level of about 15.8 percent by 2035. A number of projects are ongoing like grid reinforcement projects which include TEDAP, Dar–Tanga-Arusha distribution grid upgrade and reinforcement, selected MCC distribution reinforcement and installation of smart meters to curb electricity theft and ensure revenue protection with the TANESCO grid system.

- d) **Load factor:** The data available indicates a load factor of 55.31 percent for 2010. If the amount of load shed in 2010 is added to the energy generated and the peak is kept the same, the load factor would increase to 62.43 percent with a gradual increase to 71.78 percent in 2035. The level of electricity not delivered to customers (load shedding) was taken to represent the supply system constraints. An alternative scenario is to project demand without adding back the amount of load shed which will give unrealistic forecast of electricity.
- e) Other specific assumptions for each region are as follows:
 - i. Population growth
 - ii. Number of people per household
 - iii. Rate of increase in customers under the electrification program (applied to T1 customers)
 - iv. Rate of increase in customers in T2 and T3 as well as in T1 beyond the electrification program
 - v. Unit consumption for all three categories
 - vi. Amount and timing of new industrial loads
 - vii. Amount and timing of major expansions of existing T3 customers.

The Table 2-3 on the next page summarizes the results. It should be noted that there is a strong increase of annual demand growth starting 2013 to 2015 largely due to identified additional power demands from existing, new customers (see **Table 2-2**) and a special electrification program which tallies with government's policy statement of connecting 30% of population by 2015. The **Table 2-3** on the next page summarizes the results, and **Table 2-4** provides the corresponding peaks and evolution of the interconnected grid system - to include all the isolated regions, while **Table 2-5** presents generation requirements. **Figures 2-1 to 2-5** visualizes the sales, demand and generation forecasts for the three cases considered.

Table 2-3: Detailed Forecast Results

Sales, Generation and Peak Forec	ast - Total	Country		E	Base Case							
		Actual	Unconstraine	ed 🛛								
Region	Unit	2010	2010	2011	2012	2013	2014	2015	2020	2025	2030	2035
Arusha	GWh	305.3	305.3	322.7	343.5	488.2	685.2	853.7	1,608.8	2,472.8	3,179.9	4,091.6
Dar es Salaam	GWh	2,202.3	2,202.3	2,261.5	2,349.0	2,713.0	3,360.3	3,936.6	5,792.4	6,936.6	8,332.3	10,070.5
Dodoma	GWh	92.0	92.0	96.5	102.2	186.9	301.7	373.9	572.6	818.5	1,179.6	1,492.3
Iringa	GWh	94.7	94.7	98.1	101.6	118.8	149.4	201.3	325.5	522.5	795.1	949.8
Kagera	GWh	46.0	46.0	51.1	56.6	83.5	111.1	176.6	479.2	734.2	1,191.8	2,036.7
Kigoma	GWh	12.4	12.4	14.3	15.0	18.6	33.6	55.5	459.8	583.1	749.0	980.8
Kilimanjaro	GWh	137.9	137.9	141.7	146.9	172.0	196.8	223.2	375.8	440.4	505.4	571.0
Lindi	GWh	14.9	14.9	15.8	16.8	28.2	40.5	76.9	432.4	568.5	739.5	953.7
Manyara (Included in Arusha)				-	-	-	-	-				
Mara	GWh	58.8	58.8	67.3	77.5	87.7	98.6	109.6	181.8	304.9	521.3	916.5
Mbeya	GWh	144.0	144.0	151.8	160.6	179.8	207.2	232.2	463.3	746.3	1,159.2	1,697.7
Morogoro	GWh	182.2	182.2	188.8	196.5	216.0	241.4	268.3	476.3	792.0	1,203.2	1.577.6
Mtwara	GWh	29.1	29.1	33.3	36.0	73.4	167.4	289.5	731.1	954.9	1.226.8	1.554.2
Mwanza	GWh	217.3	217.3	223.9	231.6	358.0	465.9	543.9	933.7	1,489.8	2.065.2	2.376.1
Rukwa	GWh	17.5	17.5	18.4	19.5	30.7	41.4	61.6	174.6	282.9	450.0	710.9
Ruvuma	GWh	21.3	21.3	20.4	19.8	26.8	33.3	39.1	125.3	186.1	278.9	400.5
Shinyanga	GWh	286.9	286.9	322.2	359.3	391.7	538.3	730.5	1.368.1	2.390.6	3.776.4	5.622.8
Singida	GWh	30.3	30.3	32.3	34.6	48.4	56.6	65.4	112.3	183.4	298.5	485.1
Tabora	GWh	84.9	84.9	98.1	111.6	152.7	163.5	174.4	305.1	572.8	940.5	1 439 8
Tanga	GWh	197.1	197.1	206.8	218.0	276.6	341.3	461.5	903.3	1,263.0	1,732.6	2,155.4
Total Sales	GWh	4,175.0	4,175.1	4,364.9	4,596.7	5,651.1	7,233.4	8,873.8	15,821.4	22,243.5	30,324.9	40,083.0
Annual Growth Rate	%	,	0.0%	4.5%	5.3%	22.9%	28.0%	22.7%	7.4%	6.6%	6.0%	5.5%
Т1	GWh	2.024.1	2.024.1	2.126.2	2.258.4	2.661.1	3.094.3	3.548.7	6.016.5	9.318.0	13.642.0	18.827.5
T2	GWh	592.5	592.5	598.1	606.6	896.3	1,234.0	1.576.0	2,713.1	3,600.5	4,763.2	6.313.8
T3	GWh	1.558.5	1.558.5	1.640.6	1.731.7	2.093.7	2,905.1	3.749.1	7.091.7	9.325.0	11,919.7	14.941.8
LESS New loads	GWh	_	_	-	-	(459.0)	(1.412.4)	(2.400.3)	(5,445,1)	(6,599,3)	(8,000.9)	(9,703.3)
Total Sales	GWh	4,175.0	4,175.1	4,364.9	4,596.7	5,651.1	7,233.4	8,873.8	15,821.4	22,243.5	30,324.9	40,083.0
Distribution Losses			1.027.3	1.074.0	992.7	1.111.0	1.286.5	1.575.8	2.588.8	3.338.5	4.147.7	4.960.9
Distribution Loss rate	%		19.7%	19.7%	17.8%	16.4%	15.1%	15.1%	14.1%	13.1%	12.0%	11.0%
Generation required at S/S	GWh	4,175.0	5.202.3	5.439.0	5.589.4	6.762.2	8.520.0	10.449.6	18.410.1	25.582.0	34,472.6	45.044.0
Recovered Loadshedding	GWh	,	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0
Transmission Losses	GWh		290.8	305.9	331.0	391.1	480.8	574.6	882.7	1.160.3	1.570.7	2.056.7
Transmission Loss rate	%			5.2%	5.4%	5.3%	5.2%	5.1%	4.5%	4.3%	4.3%	4.3%
Net Generation	GWh	4,175.0	5,591.2	5,842.9	6,018.5	7,251.3	9,098.8	11,122.2	19,390.9	26,840.3	36,141.3	47,198.7
Station Use	GWh		62.19	64.99	66.94	80.65	101.20	123.71	215.67	298.53	401.98	524.96
Fraction of Station Use	%		1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%	1.1%
Gross Generation	GWh	4 175 0	5 653 4	5 907 9	6 085 4	7 331 9	9 200 0	11 245 9	19 606 6	27 138 8	36 543 3	47 723 6
Annual Growth Rate		.,	-,	4.5%	3.0%	20.5%	25.5%	22.2%	7.0%	6.4%	5.7%	5.2%
Sum of Peak Demands (MW)	MW		1,061.9	1,117.0	1,138.9	1,364.6	1,704.1	2,088.5	3,573.3	4,724.3	6,084.6	7,644.8
Coincident Peak (MW)	MW	832.6	1.054.2	1.108.9	1.130.7	1.354.7	1.691.8	2.073.3	3.547.3	4.690.0	6.040.5	7.589.4
Annual Growth Rate	%		·,	33.2%	2.0%	19.8%	24.9%	22.6%	5.9%	5.4%	4.8%	4.9%
Overal Electrification Levels	%		14.0%	14.0%	15.0%	18.0%	21.0%	24.0%	37.0%	51.0%	66.0%	78.0%

Non-coincident Peak De	Ion-coincident Peak Demand Forecast - Interconnected Grid Base Case														
MW	2010	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2025	2030	2035
Arusha	53.83	68	72	74	103	142	176	204	231	259	289	322	481	603	751
Dar es Salaam	373	472.61	485.09	490.14	554.38	672.2	783.66	921.33	1023.86	1054.58	1086.46	1119.53	1304.8	1526.05	1801.61
Dodoma	18.07	23	24	25	44	69	85	97	104	111	118	125	173	240	295
Iringa	22.6	29	30	30	34	41	55	59	64	69	75	81	121	171	188
Kagera	12	15.95	16.91	17.86	25.09	32.03	49.55	78.05	99.34	108.98	114.27	121.37	170.47	255.08	402.64
Kigoma	5.69	7.65	8.70	8.92	10.04	16.42	25.25	78.11	140.36	165.09	158.77	158.6	162.83	175.06	193.79
K'Manjaro	35.76	45.31	46.52	46.15	52.01	57.37	63.72	69.85	75.8	82.45	89.24	96.46	102.74	107.88	114.98
Lindi	1.28	1.72	3.71	3.84	6.18	8.63	16.17	25.51	34.58	82.11	83.99	88.63	115.09	147.89	188.49
Manyara															
Mara	20.2	25.6	29.24	31.5	33.78	36.01	38.63	41.19	43.65	46.87	50.3	53.97	78.01	116.88	183.93
Mbeya	30	38.01	40.04	40.86	44.48	49.83	55.17	65.66	75.13	85.52	93.9	102.79	155.58	227.75	320.79
Morogoro	39.07	49.5	51.29	51.31	54.65	59.16	64.73	69.99	74.67	84.76	94.99	105.47	162.14	228.91	281.7
Mtwara	10.71	14.41	15.24	15.33	28.44	60.12	99.12	146.31	179.45	202.85	200.7	204.72	226.07	250.84	285.3
Mwanza	42	53	55	55	83	106	123	139	155	170	187	205	318	428	477
Rukwa	6.08	6.688	8.08	8.04	11.73	14.86	21.15	30.18	35.55	45.25	47.62	50.19	70.32	98.32	140.61
Ruvuma	5.77	7.77	7.87	8.58	10.86	12.71	14.41	16.66	27.33	36.42	37.09	38.66	50.17	66.6	79.41
Shinyanga	74.3	94.14	105.52	112.6	118.34	156.46	207.75	243.18	255.5	286.75	318.28	350.13	555.74	803.17	1128.12
Singida	7	9.37	9.98	10.17	13.74	15.62	17.8	19.92	22.02	23.97	26.09	28.39	43.29	66	97.35
Tabora	19.61	25	29	31	42	43	46	48	50	58	66	74	130	201	289
Tanga	59.3	75.14	78.79	78.61	94.92	111.72	146.38	169.5	206.48	231.17	236.98	247.34	304.02	371.18	426.12
System Peak Demand Growth	832.6	1,054.17	1,108.88 33.2%	1,130.65 2.0%	1,354.75 19.8%	1,691.78 24.9%	2,073.35 22.6%	2,504.15 20.8%	2,876.71 14.9%	3,180.54 10.6%	3,349.22 5.3%	3,547.34 5.9%	4,690.02 5.4%	6,040.50 <i>4.8%</i>	7,589.41 4.9%
Overall Electrification R	ate	13.75%	14.46%	15.23%	18.31%	21.28%	24.14%	26.91%	29.59%	32.05%	34.63%	37.34%	50.75%	65.78%	78.17%

Table 2-4: Regional Peak Demand Forecast

Year	Sum of Peak MW	Coincidental Peak MW	Gross Generation GWh
2010-Unconstrained	1,061.9	1054.17	5,653
2011	1,117.0	1108.88	5,908
2012	1,138.9	1130.65	6,085
2013	1,364.6	1354.75	7,332
2014	1,704.1	1691.78	9,200
2015	2,088.5	2073.35	11,246
2016	2,522.4	2504.15	13,520
2017	2,897.7	2876.71	15,494
2018	3,203.8	3180.54	17,194
2019	3,373.7	3349.22	18,322
2020	3,573.3	3547.34	19,607
2021	3,780.7	3753.31	20,943
2022	4,008.7	3979.63	22,424
2023	4,252.9	4222.11	24,000
2024	4,482.8	4450.34	25,514
2025	4,724.3	4690.02	27,139
2026	4,979.2	4943.10	28,860
2027	5,247.6	5209.56	30,689
2028	5,531.0	5490.90	32,635
2029	5,806.0	5763.93	34,560
2030	6,084.6	6040.50	36,543
2031	6,377.5	6331.25	38,646
2032	6,678.8	6630.38	40,836
2033	6,978.6	6927.98	43,030
2034	7,290.2	7237.37	45,359
2035	7,644.8	7589.41	47,724

 Table 2-5: Demand, Generation Forecasts

Figure 2-1: Electricity Sales Forecast: 2011 - 2035

Figure 2-2: Gross Generation Forecast: 2011 - 2035

Figure 2- 3: Peak Demand Forecast: 2011 - 2035

Note: The forecast is based on actual data for 2010 base year and therefore peak demands for 2011 and 2012 were estimates. Furthermore, the estimates were based on unconstrained electricity demand consumption.

Econometric method

The econometric method consists of two steps which are detailed in the main report of this study. A snapshot of the methodology follows below:

<u>Step 1</u>: Plot the Sales vs. economic and/or demographic indicators, i.e. fit – via a regression analysis – an equation of the form:

Sales (t) = $\alpha + \beta \cdot (\text{demographic indicators, t}) + \gamma \cdot (\text{economic indicators, t})$

Where at time t: Sale = Sales in GWh (Sales could be T1 Sales, T2 Sales, T3 Sales or Country Sales), Demographic indicators = Population, housing, etc. Economic indicators = GDP, or subset thereof, and α , β and γ are the (estimated) coefficients.

Forecast for Category T1

Category T1 is composed of residential, commercial, light industry and street lighting customers. A series of relationships between sales to T1 customers and a number of combinations of various economic and demographic parameters were examined. The regression equation is given by: T1 Sales as function of Total GDP

The relationship is: $T1 = 16.9954 + 0.000118 \times GDP$ Where T1 is expressed in GWh and the Total GDP is in TSh million (constant 2001 prices).

Forecast for Category T2

Category T2 includes low voltage commercial, service and industrial supply. A series of relationships between sales to T2 customers and a number of combinations of various economic and demographic parameters were examined. The equation is given by:

T2 Sales as a function of the sum of industry and services GDPs

The relationship is: **T2 Sales = 191.2547 + 0.0000271 x (Industry +Services GDPs)** Where T2 is expressed in GWh and the Industry **Plus** Services GDP is in TSh million (constant 2001 prices).

Forecast for Category T3

Category T3 includes high voltage supply, agricultural and National Urban Water Authority (NUWA) and mining load customers. A series of relationships between sales to T3 customers and a number of combinations of various economic and demographic parameters were examined.

The best relationship found was:

Sales to T3 customers as a function of sum of Agriculture and Industry GDPs alone

The relationship is: T3 Sales = -422.0447+0.000251 x (Agric + Industry GDPs) Where T3 is expressed in GWh and the Agriculture **plus** Industry GDP is in TSh million (constant 2001 prices).

Forecast of total sales using a global equation

Total sales as a function of total GDP

The relationship is: Global Sales = $-291.516 + 0.00026928 \times GDP$ Where Total Sales is expressed in GWh and the Total GDP is in TSh million (constant 2001 prices).

Forecast Results: Figure 0d: Econometrics forecasts – as sum of the three categories and as global

Figure 2- 4: Econometric Forecast: 2011 - 2035

Table 2-6: Sales Forecast (GWh) by Econometric Method

YEAR	T1	T2	T3	T1+T2+T3	Global
2010	2,187.0	599.8	1,604.4	4,391.2	4,391.2
2011	1,444.4	413.7	1,192.7	1,192.7 3,050.8	
2012	2,140.1	560.5	1,736.7	4,437.3	4,552.1
2013	2,272.2	586.1	1,876.1	4,734.5	4,853.4
2014	2,413.1	613.5	2,026.0	5,052.6	5,174.9
2015	2,563.6	643.0	2,187.0	5,393.5	5,518.1
2016	2,725.3	674.5	2,362.5	5,762.3	5,887.0
2017	2,896.8	708.4	2,548.9	6,154.1	6,278.4
2018	3,080.1	744.7	2,749.4	6,574.2	6,696.5
2019	3,276.0	783.7	2,965.4	7,025.0	7,143.3
2020	3,485.3	825.5	3,198.0	7,508.8	7,620.9
2021	3,709.1	870.4	3,448.7	8,028.2	8,131.5
2022	3,978.1	925.4	3,741.9	8,645.4	8,745.1
2023	4,268.2	985.0	4,060.8	9,314.0	9,407.0
2024	4,581.3	1,049.7	4,407.6	10,038.6	10,121.4
2025	4,919.3	1,119.7	4,785.1	10,824.1	10,892.5
2026	5,284.4	1,195.6	5,196.1	11,676.1	11,725.2
2027	5,678.7	1,278.0	5,643.8	12,600.4	12,624.8
2028	6,104.8	1,367.3	6,131.7	13,603.7	13,596.8
2029	6,565.3	1,464.2	6,663.6	14,693.1	14,647.5
2030	7,063.3	1,569.3	7,243.9	15,876.4	15,783.6
2031	7,601.9	1,683.4	7,877.0	17,162.2	17,012.3
2032	8,184.6	1,807.2	8,568.0	18,559.8	18,341.7
2033	8,815.2	1,941.7	9,322.6	20,079.6	19,780.4
2034	9,498.0	2,087.6	10,147.0	21,732.6	21,337.9
2035	10,237.3	2,246.2	11,047.7	23,531.2	23,024.6

Trend of Energy Share per Customer Tariff Category

Looking at the trend of electricity share per customer categories as illustrated in **Table 2.7**, it is apparent that projections of tariff aimed at facilitating Tanzania to become a middle income country characterised by semi-industrial activities. Notwithstanding, a large contribution of T1 category in overall sales, its share is gradually declining reaching 43.5% in 2035 from a highest share observed in 2012. Similarly, T2 share is declining slowly reflecting graduation of T2 category into T3 category (agriculture and Industry). Comparably, T3 categories despite of their lower share in the early years of projections, their trend is increasing from 39.1% in 2011 to 46.9% surpassing T1 category mainly on account of expected increase and expansion of industrial and mining activities.

Year	T1	T2	Т3
2011	47.3%	13.6%	39.1%
2012	48.2%	12.6%	39.1%
2013	48.0%	12.4%	39.6%
2014	47.8%	12.1%	40.1%
2015	47.5%	11.9%	40.5%
2016	47.3%	11.7%	41.0%
2017	47.1%	11.5%	41.4%
2018	46.9%	11.3%	41.8%
2019	46.6%	11.2%	42.2%
2020	46.4%	11.0%	42.6%
2021	46.2%	10.8%	43.0%
2022	46.0%	10.7%	43.3%
2023	45.8%	10.6%	43.6%
2024	45.6%	10.5%	43.9%
2025	45.4%	10.3%	44.2%
2026	45.3%	10.2%	44.5%
2027	45.1%	10.1%	44.8%
2028	44.9%	10.1%	45.1%
2029	44.7%	10.0%	45.4%
2030	44.5%	9.9%	45.6%
2031	44.3%	9.8%	45.9%
2032	44.1%	9.7%	46.2%
2033	43.9%	9.7%	46.4%
2034	43.7%	9.6%	46.7%
2035	43.5%	9.5%	46.9%

 Table 2-7: Trend of Electricity Share per Customer Tariff Category

Figure 2- 5: Econometrics forecasts: Scenarios

Comparison of Trend Analysis and Econometric Analysis

Table 2-8 provides a comparison of the econometric results with the trend line results. The econometric relationship applied to Global Sales was used for this comparison as it was, by far, the strongest econometric relationship. For comparison and considering the impact of the identified new loads in the industrial surveys, and the five-year program to connect 1.25 million customers, the difference between the forecast using the two approaches reveal that trend analysis approach provide higher estimates (taking into account assumptions of programs etc) than econometric approach. In this context and in the absence of policy interventions¹, the two approaches to the forecast energy would essentially derive comparable forecast results.

Year	Global - Econometric	Trend Forecast_	Difference: with	Difference:
		Total	Global	(percent)
2012	4,552.1	4,596.7	44.6	1.0%
2015	5,518.1	8,873.8	3,355.7	60.8%
2020	7,620.9	15,821.4	8,200.4	107.6%
2025	10,892.5	22,243.5	11,351.0	104.2%
2030	15,783.6	30,324.9	14,541.3	92.1%
2035	23,024.6	40,083.0	17,058.5	74.1%

Table 2-8: Forecast Comparison: Econometric–Global vs Trend-Total in GWh

The difference of the forecast in terms of average growth rate over the planning horizon remains large as the trend approach reveals more GWh compared to econometric methods. The reason is mainly attributable to the connection of 1.25million customers under electrification program in early years of the forecast. Thereafter, the growth rates of trend approach grow at a sustainable

¹ The policy intervention means special program initiated by the government to be implemented such as special rural electrification program which results in strong demand growth in the early years of the forecast.

rate necessary to achieve overall objective of electrifying 75% of population by 2035. As such the growth using the trend line averages 9.7 percent while the growth using the econometric approach averages 7.5 percent.

CHAPTER 3

GENERATION PLAN

Introduction

Generation plan presents an assessment of generation sequencing that meet demand for the forecast period. A number of generation technologies have been evaluated to attain the recommended plans for development of power sector in the country. In identifying new power projects, the plan evaluate new power generation technologies, including a review of capital investment, project lead time, fuel costs and their availability, both locally and imported. In addition, confirmatory studies such as environmental assessment and project financing arrangement are key elements of the projects preparations and signals on the possibility of success for the identified projects. The generation plan considers the following power sources namely hydro, gas, coal, wind, geothermal, among others.

Description	Criteria
Plan Horizon	2010 - 2035
Shadow Price	Not applicable, as foreign currencies are freely trading in Tanzania
Cost of Un-serve Energy	US\$ 1.1 per kWh (taken from 2009 PSMP updates)
LOLE	5 days per Year
Plant Outage time	
Hydro	8%
Thermal	11% - 20%
Plant Service Life	
Hydro	50 Years
Thermal	20 – 25 Years
Lead Time	
Hydro	5 – 10 Years
Thermal	2 – 6 Years
Reserve Margin	15% - 20%

Table 3-1: Planning Criteria

Hydropower Projects

The hydro system capabilities for the existing plants have been assessed for both average and firm energy deliveries. The probable on-power date depends on, at which stage of preparation

the project has reached (lead time). Tables 3.1 below show the lead time and capacity for future hydropower projects.

PROJECT	MW	Capital cost \$M no IDC / 2010	Con- struction - months	Present status	Project preparation years	Contract and construction - years	Minimum lead time years	Source	Earliest on power (January)
Ruhudji *	358	1688.07	66	Committed	2	6	8	EAPMP	2020
Stieglers Phase 3 Addition	300	280.94	24	Feasibility	3	2	5	EAPMP	2024
Kihansi II	120	211.05	45	Prefeasibility	2	4	6	EAPMP	2018
Stieglers Phase 2 addition	600	342.71	36	Feasibility	3	3	6	EAPMP	2023
Kakono	53	99.29	36	Prefeasibility	2	4	6	SSEA	2018
Rusumo	90	423.60	36	Feasibility	2	4	6	SNCL	2018
Songwe Bipugu	34	92.67	36	Prefeasibility	2	4	6	Norconsult	2018
Masigira	118	229.53	54	Prefeasibility	3	4	7	EAPMP	2019
Malagarasi (Igamba III)	44.8	209.30	60	Feasibility	2	4	6	ESBI	2018
Mpanga	144	274.09	63	Prefeasibility	3	5	8	EAPMP	2020
Songwe Manolo	149	285.84	48	Prefeasibility	3	5	8	Planning criteria	2023
Taveta	145	257.40	60	Prefeasibility	3	5	8	Planning criteria	2022
Rumakali	520	994.05	84	Feasibility	3	5	8	EAPMP (must follow Soft	2020
Songwe Sofre	157	281.13	60	Prefeasibility	3	6	9	Planning criteria	2021
lkondo	340	682.49	72	Prefeasibility	3	6	9	Planning criteria	2021
Stieglers Phase 1	300	961.95	108	Prefeasibility	4	6	10	EAPMP	2022

Table 3-2: Lead-Times on Hydropower Projects

Implementation under negotiation with IPP

Stieglers earliest on power assumes construction of additions in partially in parallel. Lag between stages is arbitrary

Thermal Power Projects

The following new thermal power proposals have been identified and reviewed with regard to likely lead-times for determining expected on-power dates.

Diant Evel			Nominal	Minimum	Earliest on
Plant	Fuel	Installed	Service	lead time	power year
		Capacity MW	Life Years	years	(Jan)
COAL FIRED PLANT					
Coast Coal	Coal	500	25	6	2019
Kiwira I *	Coal	200	25	6	2017
Kiwira II *	Coal	200	25	6	2019
Local Coal I	Coal	100	25	6	2026
Local Coal II	Coal	200	25	6	2029
Local Coal III	Coal	400	25	6	2030
Local Coal IV	Coal	400	25	6	2031
Local Coal V	Coal	400	25	6	2033
Local Coal VI	Coal	300	25	6	2034
Mchuchuma I	Coal	300	25	5	2018
Mchuchuma II	Coal	300	25	6	2019
Mchuchuma III	Coal	300	25	6	2019
Ngaka I	Coal	200	25	6	2019
Ngaka II	Coal	400	25	6	2019
HFO/Gas/IDO FIRED PLANT					
Kinyerezi I	GTs - Gas	150	20	1	2014
Kinyerezi II	CCGT	240	20	3	2016
Kinyerezi III	CCGT	300	20	4	2017
Kinyerezi IV	GTs - Gas	300	20	4	2017
Mkuranga 250	CCGT	250	20	4	2015
Mtwara 400	CCGT	400	20	4	2016
Mwanza MS Diesel	MSD	60	20	1	2014
Somanga Fungu	CCGT	320	20	3	2016
Zinga 200	CCGT	200	20	4	2015
TOTAL		6420			

Table 3-3: Lead-Times on Thermal Projects

Renewable Projects

The following new renewable power projects have been identified to be developed in the short term. These are biomass, solar and wind as shown in the table below.

RENEWABLES					
Mufindi (Cogen)	Biomass	30	20	3	2016
Sao Hill (Cogen)	Biomass	10	20	3	2016
Solar I	Solar	60	20	3	2016
Solar II	Solar	60	20	3	2018
Wind I	Wind	50	20	3	2016
Wind II	Wind	50	20	3	2017
TOTAL		260			

Table 3-4: Lead-Times on Renewable Projects

Geothermal

Geothermal is another potential source of power in the country. Currently there are about 50 geothermal potential sites in the country, with an estimated geothermal potential of more than 650MW. There are three most promising sites proposed for more detailed investigations. The sites are:

- a) Lake Natron in Arusha region
- b) Songwe river basin in Mbeya region

 $_{\rm c)}$ $\,$ Luhoi Spring site, with potential of 50 - 100MW located in Lower Rufiji Valley, Utete district.

There is insufficient information to consider geothermal option in the generation expansion plan under the current PSMP review. However given the importance of using Tanzanian resources, the coming comprehensive PSMP update could include up to 100MW geothermal plant as a candidate starting 2025 in anticipation that confirmatory studies will have been completed.

Gas Availability

It is assumed that 70 percent of the available gas will be used for power generation and the remaining 30 percent for other uses including industrial activities. The 70:30 assumptions is based on the expectation that number of gas based industries will increase as per Gas utilization Master Plan. The current gas consumption ratio in Dar es Salaam is at 85:15; therefore, it is a rule of thumb. Other assumptions on the timing, costs, infrastructure required on gas development is out of scope of this report.

The assumed gas resource for existing plants and future projects in the 2012 PSMP update is shown in **Table 3.4.** This table indicates gas supply to meet the present gas plants and the proposed future projects to cover their operational lives. It is assumed that a significant portion of the available gas resources is confined for use in power generation implying that other gas customer needs remain at current level.

	Generation as used	lat exercice d	lent tiector ior 70 %	Proven (BCF)	Revenue (BCF)						
	PAE(T) contract 245	i WW x 18 ye	85 =			3920	IWAYEAR	70 %PF			
	SONGO SONGO			890	2000	INATEAR	70 %PF				
	MNAZI BAY			262	5000	4506.4	INATEAR	70 %PF			
	MILIFANGA				20	D	INAYEAR	70 %PF			
	KILMAN				7	D	INAYEAR	70 %PF			
	NTORYA				17	D	INAYEAR	70 %PF			
	DEEP SEA				26000	D	INAYEAR	70 %PF			
	1 bif equivalent to			17.2	MW-years at 70 '	% CF					
			645	1 0			GAS YEARS	NN-YENES			
YEAR	PLAIT		ADDED		GASONUE	YEAR	(Aller Jan 2014)	70% PF			
								COMMITTED			
202	legela IPTL			100		2014					
204	Songes 1	PPP	42		42	2024	11	482			
205	Songes 2	PP	120		162	2025	12	140			
2008	Sorres 3	PP	40		202	2028	13	520			
2007	Ubango i		100		302	2028	13	1300			
208	Minner e	PP	18		320	2029	14	22			
2009	Tecela neur		45		365	2029	16	720			
2012	Ubango II		105		470	2032	19	1995			
2013	Kinyerezi I		10		620	2033	20	300			
203	Spation 215	84,	10		(2)	2014	1	100			
2014	Kinverssi I		160		880	2034	20	3210			
2/14	Somenge	84,	210		1190	2034	20				
205	Anjerez II		30		1390	2035	20	800			
205	Zinge-Begenoyo	84,	20		1815	2035	20	60			
2015			250		1865	2035	20	5000			
2014	iegela it IL		100		1965	2022	9	900			
2018		PP			265	2038	20	800			
IOLAL			245					41539			

Table 3-4: Natural Gas Utilization-Existing/committed Plants

Coal Resources

Tanzania is endowed with coal resources estimated at 496 million metric tonnes (MT) of proven reserves as indicated in table 3.4 below. As per the project lead time, the first coal power plant is expected to be on line by 2016. This plan has taken in to consideration the importance of coal in electricity generation, therefore, future generation will consider coal fired power plant as base load.

	Coal Resources			Proven (MT)	Reserve (MT)		
	NGAKA			251.00	ζ,		
	MCHUCHUMA			125.30	454.10		
	KIWIRA			86.31			
	KATEWAKA			33.50	81.70		
			Total	496.11			
			INSTALLED	SPECIFIC	CONSUMPTION	PLANT LIFE TIME	TOTAL COAL
YEAR	PLANT		CAPACITY	CONSUMPTION	PER YEAR		CONSUMPTION
			[MW]	[GJ/MWh]	[MT]	[YEARS]	[MT]
2016	Kiwira I		200	9.24	0.72	25	18.00
2016	Coastal Coal		300	9.73	0.80	25	19.90
2017	Ngaka I	IPP	200	9.73	0.53	25	13.27
2018	Mchuchuma I	IPP	300	8.99	0.74	25	18.48
2018	Kiwira II	IPP	200	9.24	0.72	25	18.00
2022	Ngaka II	IPP	200	9.73	0.72	25	18.00
2020-2024	Mchuchuma II	IPP	400	8.99	1.13	25	28.29
2026-2028	Mchuchuma III	IPP	300	8.99	0.28	25	21.22
2029	Local Coal I		200	9.73	0.05	25	1.33
2030	Local Coal II		400	9.73	1.33	25	33.17
2031	Local Coal III		400	9.73	1.33	25	33.17
2033	Local Coal IV		400	9.73	1.06	25	26.53
2034	Local Coal V		300	9.73	0.80	25	19.90
TOTAL			3800				269.25

Table 3-5: Coal Resources Utilization for future generation

Plan Strategies

This update has retained some of the following strategies used in the preparation of the 2008 Master Plan, and subsequent 2009 Update study.

Overall Power Development Strategy:								
Element	Why?							
Base case load forecast	To take account of all identified new industrial loads, including background load growth, and to target a 75% electrification rate by 2035.							
Interconnect isolated regions	To the extent that it is economic and feasible to do so, in order to promote social and economic development							
Install all new generation options that are feasible in the short term regardless of unit cost	To eliminate risk of load shedding in early years of the plan							
Use judicious mix of hydro and non-hydro generation options	To avoid over-reliance on hydro with attendant risk of power shortages during dry periods							
Accept limited amounts of firm imports/exports	To balance low cost of power and energy self-sufficiency							
Schedule new generation so that sufficient reserve margin is provided to allow for future pool power trading	To improve the economics of system expansion by developing revenue potential, while also providing improved security of energy supply							

Projects Considered in the Short-Term Plan

Power generation projects tabulated below have been included in the short-term plan (2013 - 2017). These are either under construction, committed stage, and/or they have short lead time and can be developed under accelerated arrangements. As per the study review and given the existing demand, the Plan has identified with reasons some projects that need to be considered in the short term.

Pro	ject Description	Reasons	Date On-line
a)	Mwanza 60MW, Diesel fired	i. They are committed plants,	
		ii. Meet background growth in demand in Tanzania	Early 2013
		iii. These are the only resources identified as capable of being ready at this short time	
a)	Kinyerezi I, 150MW GTs plant	i. Meet background growth in demand	Early 2014
		ii. They are the only resources identified as capable of being ready at this time	
a)	Somanga Fungu (TANESCO)	i. Meet background growth in demand	Early 2015
b) c) d)	8MW Somanga Fungu 210MW Kinyerezi II, 240MW GTs plant 200 ± 25MW Gas based	ii. Generation mix, to include renewable wind poweriii. They are the only resources identified as earthly of being ready at this time.	
e) f)	(Zinga - Bagamoyo) Mkuranga 250MW - Enka Renewable - Cogen (Mufindi) 30MW	capable of being ready at this time	
g)	Renewable – Cogen (Sao Hill) 10MW		
a)	Kinyerezi III, 300MW GTs plant	i. Meet background growth in demand	Early 2016
b) c)	Mtwara (18), 400MW Kiwira I 200MW Coal fired, Mbeva	ii. They are the only resources identified as capable of being ready in the short time	
d)	Somanga Fungu, 110MW	iii. Generation mix, to include more renewable	
f)	Solar I, 60MW	wind power	
g)	Import (Kenya/Ethiopia), 200MW		
a) b)	Wind II, 50MW, Ngaka-I 200MW, coal fired Ruvuma	i. Meet background growth in demand ii. Import from Ethiopia through Tanzania –	Early 2017
c) d)	Hale, 11MW Interconnector	Kenya interconnector.	

 Table 3-6: Power Generation Projects for Short – Term Expansion Plan

Mid to Long-t	erm strategies						
Element	Why?						
Work with IPPs/PPPs to Identify and study additional sites for renewable power generation	It is a renewable energy whose costs are being lowered through ongoing research world-wide						
Implement the Demand Side Management Program as per energy efficiency study report.	Postpone investments of power generation projects that are expensive. It is cheaper to implement energy efficiency program than building a new plant						
Work with the Ministry of Energy and Minerals, and the private sector to continue studies to prove up additional quantities of natural gas	It is a relatively low-cost indigenous fuel with relatively few negative environmental and social impacts						
The government to harmonize the acceleration of coal usage for power generation	It is a relatively low-cost indigenous fuel although it has significant negative environmental and social impacts. With new technology can be considered as base load resource.						
Develop and implement a program of project preparation studies, including environmental and social assessments, for all hydro sites included in this PSMP generation plan.	Hydro is of key importance as an indigenous resource, and indicative costs are lower than thermal power. Adequate basic information is required to encourage private investors to submit proposals for project implementation						
Work with the Ministry of Energy and Minerals to develop a long term policy on possible use of nuclear power, and support studies to prove the availability and capacity of uranium resources and study the opportunities for the development of nuclear generation	It may be a relatively low-cost indigenous fuel that has few immediate environmental and social impacts.						
Complete studies on Stiegler's Gorge hydro development to the point where a decision can be made on whether or not it can be implemented	On the one hand, it is a relatively low cost power development with few negative environmental and social impacts. On the other hand, it is located in a Game Reserve which makes it difficult to obtain international financing						

Interconnection strategies The country should move immediately towards interconnection with neighbouring power system interconnection.									
Countries	Generation	Why?	When?						
Ethiopia via Kenya		To improve energy security with power purchases	From 2016						
Zambia and Kenya,		- do -	110111 2010						
Tanzania and Mozambique	Interconnector								
The rest of EAC countries.		- do —	mid – term						
Comments: Interconne	ection would facilitate inter-	egrated power resource planning that have environm	nental and social						

Generation Plan Results

Development of Comparative Expansion Plans (High, Base and Low Case)

The development of alternative expansion generation plans covered the three scenarios following three cases of load forecast. The scheduling of projects in each plan (high, base and low case) observes a reserve margin on firm capacity in the order of 15 - 20 percent, hydro thermal mix of 40:60 and export/import of not more than 25 percent of total available capacity. The purpose of these relatively high reserve margins is to allow sufficient generation capability to meet local demand and the possibility for power trading with the neighbouring countries during average hydro supply.

The 2012 Update generation expansion plan retains the base case scenario as a recommended power generation expansion plan for the country. The plan reflects the most likely evolution of power demand, sector and economic growth. Overall and as shown in **Table 3.7**, the "Base Case Plan" has a total installed capacity of 8960MW by 2035 consisting of 3304 MW hydro, 995MW gas-fired generation, 3800MW-Coal, 100MW-Solar, 120MW-Wind, 40MW- Biomass/Cogen, and some export limited to 250MW of total available generation. This plan fulfills all assumptions and results which were assumed and obtained in the load forecast respectively.

Table 3-7: Base Case Plan

	LOAD FORECAST CASE										On power . Thermal as	January January Iditions are	net MW				
				ADDITION		TOTAL	SUPPLY	DE	MAND	SURPLUS	(DEFICIT)	Capacity	e Margin Energy	Genera % H*	rDRO	Power Pc	ol Trading
YEAR	PLANT	FUEL	TYPE	MW	GWH	MW	GWH	MW	GWH	MW	GWH	%	%	Capacity	Energy	MW	GWH
2011	All existing plants			1103	5310	1103	5310	833	4485	270	825	32	18	33	55	(145)	(152
2012	Aggreiko (Ubungo) Aggreiko (Ubungo) Bymbion 112 Bymbion 112 Bymbion 112 Ubungo II Ubungo II Aggreiko (Tegeta) Aggreiko (Tegeta) Mwenga Hytic Bymbion 205 DF0/DMA Bymbion 205 DF0/DMA Menga Hytic Ubungo II Ubungo II Ubungo II	FUEL FUEL GAS GAS FUEL Gas FUEL FUEL FUEL FUEL FUEL FUEL FUEL FUEL	GO GT GT Jet-A1 Jet-A1 GO GO GO GO GO GO Diesel GT GT GT	500 (500) 755 377 377 370 550 550 550 650 650 650 650 650 650 65	243 381 494 283 338 283 338 284 283 338 290 290 290 290 291 (338) 290 291 (338) 291 291 291 291 291 291 291 291 291 291	1103 1103 1028 1103 1066 1103 1208 1258 1208 1258 1208 1258 1208 1267 1317 13177 1482 1377 1482 1377	5551 5471 5310 5793 5714 5952 6291 6532 6453 6808 7023 7313 7990 7651 7410	1139	6085	178	937	16	15	28	42	(7)	. (25)
2014	Aggirako (tobaligb) Aggirako (tobaligb) Symbion 205 DSM Mwenga Hydro Symbion 112 Symbion 112 Symbion 112	FUEL FUEL Hydro Hydro FUEL FUEL FUEL	GO GO Hydro Jet- A1 Jet- A1 Jet- A1	(50) (50) (4 (4) 75 37 (112) -	(242) (242) 645 - 2 242 119 (722) -	1327 1277 1377 1381 1381 1377 1452 1489 1377 1377 1377	7168 7813 7819 7817 8059 8178 7456 7456 7456	1365	7332	12	124	1	2	27	40	192	976
2015	Somanga Tanesco Symbion 205 ARUSHA Retire Symbion 205 ARUSHA Kinyerezi I Somanga Fungu (320) Mwanza MS diesel Mwanza KS diesel Retire Symbion 112 Retire Symbion 205 ARUSHA Retire Symbion 205 DSM	Gas FUEL FUEL Gas Gas Fuel FUEL Gas FUEL FUEL FUEL FUEL	GE GT GT GT Diesel Jet- A1 CCGT GO GO	8 50 (55) (55) 150 210 (60) (112) 240 (50) (100)	48 215 (355) 967 677 (315) 387 (351) (361) 1682 (215) (215) (245) (245)	1385 1435 1385 1330 1480 1690 1690 1578 1818 1768 1668 1668	7504 7719 7365 7010 7977 8654 8339 8726 8365 10047 9832 9187 9540	1704	9200	(127)	(835)	(7)	-9	23	35	382	2,215
2016	Zinga 2004W Somanga Fungu (320) Mkuranga 2504W Renewable - Cogen (Sac Hill) Renewable - Cogen (Mindi) Kiriyerez III Somanga Fungu (320) Interconnector (Ethiopia/Kenya) Kiwira I Mtwara 400MW	Gas Gas Gas Biomass Biomass Gas Gas Import Coal Gas	CCGT GT CCGT Cogen GT CC Import Steam CCGT	200 210 255 10 300 110 200 200 400	1,289 1,354 1,612 84 210 1934 709 1,402 1,402 2,579	1658 1868 2118 2128 2158 2458 2768 2768 2968 3368	9799 11153 12765 12849 13059 14993 15703 17104 18506 21085	2088	11246	69	1813	з	16	22	23	244	(126
2017	Solar I Renewable - Wind I Renewable - Wind II Noaka I	Solar Wind Coal	Solar Wind Wind Steam	60 50 50 200	210 201 175 1,289	3368 3428 3478 3478 3528 3728	21085 21295 21496 21496 21672 22961	2522	13520	955	7976	38	59	12	14	(577)	(5,948)
2044	Hale Coastal Coal	Hydro Coal	Hydro Steam	11 300	28 1,934	3728 3738 4038 4038	22961 22989 24923 24923	2898	15494	1140	9429	39	61	11	12	(706)	(7,105)
2018	Mchuchuma I Kiwira II Solar II Interconnector - Rwanda/Burundi Interconnector - Mozambioue	Coal Coal Solar export export	Steam Steam Solar export export	2/ 300 200 (50) (100)	148 1,934 1,289 210 (350) -645	4065 4365 4565 4625 4575 4475	25071 27005 28295 28505 28154 27510										
2015	Interconnector - I (Zambia) Kakono Ngaka II	export Hydro Coal	export Hydro Steam	(100) 53 200	(701) 335 1,402	4375 4375 4428 4628 4628	26809 26809 27144 28545 28545	3204	17194	1171	9614	37	56	10	11	(690) - (748)	(7,035)
2020	Mchuchuma II-1 Malanarasi	Coal	Steam	100	701	4628 4728 4773	28545 29246 29433	3573	19607	1199	9827	34	50	11	11	(663)	(6.886)
2021	Ruhudji	Hydro	Hydro	358	1,333	5131 5131	30766 30766		00040	4050	0000		47			(300)	-
2023	Mpanga	Hydro	Hydro	144	646	5275 5275	31412 31412	5701	20245	1350	302.5	30		10	10	-	-
2023	Mchuchuma II-2 Retire Tegeta IPTL Stieglers Gorge I Songwe Bupigu	Coal Fuel Hydro Hydro	Steam HFO Hydro Hydro	100 - (100) 300 34	701 (701) 1908 101	5375 5375 5275 5575 5609 5609	32113 32113 31412 33320 33421 33421	4009	22424	1366	9689	34	43	20	9	(765)	(6,325)
2024	Masigira Mchuchuma II-2	Hydro	Hydro	118	492	5609 5727	33421 33913 25215	4253	24000	1356	9422	32	39	26	9	(718)	(5,822)
2025	Rumakali Retire Songas 1+2+3	Hydro	Hydro	520	2,520	5927 6447 6447 6447 6260	35315 37835 37835 37835 37835 36524	4483	25514	1444	9801	32	38	27	8	(771)	(5,974)
2026	Songwe Sofre	Hydro	Hydro	157	456	6260 6260 6260 6417 6417	36524 36524 36524 36980 36980	4724	27139	1535	9386	33	35	34	8	(827)	(5,315)
2027	Mchuchuma III-1	Coal	Steam	100	701	6517 6517	37681 37681	4979	28860	1537	8821	31	31	35	8	(791)	(4,492)
2028	lkondo - Mnyera	Hydro	Hydro	340	1,316	6857 6857	38997 38997	5248	30689	1609	8308	31	27	33	11	(822)	(3,705)
2025	Songwe Manolo Taveta - Mnyera	Hydro Hydro	Hydro Hydro	149 145	1402 488 622	7206 7351	40399 40887 41509	5531	32635	1675	8252	30	25	37	8	(845)	(3,357)
2030	Local Coal I Retire Ubungo GT	Gas	Steam GT	200 (100)	(701)	7551 7451 7451	42910 42210 42210	5806	34560	1745	8351	30	24	39	7	(874)	(3,167)
202	Local Coal II	Coal	Steam	400	2803	7851	45013 45013	6085	36543	1766	8469	29	23	37	7	(853)	(2,988)
2031	Local Coal III	Coal	Steam	400	2803	7810 7810 8210 8210 8210	44725 44725 47529 47529 47529	6377	38646	1832	8883	29	23	36	6	(876)	(3,086)
2035	Retire Mwanza Ms Diesel Retire Ubungo EPP Retire Cogen	Fuel Gas Biomass	Diesel GT Steam	(60) (100) (40) -	(420) (701) (280)	8150 8050 8010 8010 8010	47108 46407 46127 46127 46127										. "
2033	Stieglers Gorge II Local Coal IV	Hydro Coal	Hydro Steam	600 400	855 2,579 -	8610 8610 9010 9010 9010	46982 46982 49561 49561 49561	6679	40836	1931	6146	29	15	41	6	(929)	(21)
2034					-	9010 9010 9010 9010 9010	49561 49561 49561 49561 49561	6979	43030	2031	6531	29	15	39	6	(984)	(77)
2035	Local Coal V Stieglers Gorge III	Coal Hydro	Steam Hydro	300	1,934 - 464	9310 9310 9310 9610 9610	51495 51495 51495 51959 51959	7290 7645	45359 47724	2019 1965	6136 4236	28 26	14 9	38 37	6 7	(926) (818)	668 2,923
L	TOTAL ADDITIONS 2011-2035	1	1	9610	51959	19219	103918				•				<u> </u>	L	<u> </u>

CHAPTER 4

TRANSMISSION PLAN

In year 2012, the government launched the development plan for the next generation main grid, a plan to upgrade and invest in new grid capacity to meet the future energy requirements from society including extending the grid to isolated centers and delivering reliable and high quality energy to end-users. The plan represents our ambitions for the coming decade and is committed to, through on time implementation of the recommended projects in years leading up to 2035, strengthen Tanzania's grid infrastructure, and thus safeguard the "backbone" of the power system. With this in mind, the 2012 Grid Development Plan is a realizable and sound one. The existing transmission network to date is as shown on the map below:

Figure 4-1: Existing Transmission Network

Source: TANESCO

Drivers for grid development

a) Security of supply is our top priority

The Western, Northern and Lake Zones need new transmission capacity to secure a satisfactory supply, the South-West and Dar es Salaam areas also need transmission capacity to evacuate excess generated power to other load centers. In 2010, the government initiated preparations for the 400kV transmission projects namely the backbone project, South-West transmission project, Dar es Salaam – Tanga – Arusha and Dar es Salaam – Morogoro - Dodoma transmission projects and the 220kV transmission projects namely the North-West Grid, Makambaku – Songea, Dar es Salaam – Somanga – Mtwara and Songea - Mtwara.

Lengthy preparation procedures have forced the government to increase focus on preparedness in recent years, and in some cases have found it necessary to implement special short-term preparedness measures in certain areas.

b) Renewable energy requires more grid capacity,

The government is determined to achieve its goals regarding new renewable generation in the most social economic efficient way. The government aims to contribute to at least 260MW of new renewable power generation being connected to the Tanzanian grid by 2016. Since the potential for renewable in the country is great, it is important that all these developments are balanced, so that new generation is harmonized and adjusted to the implemented grid development plans as well as changes in consumption patterns. This applies both nationally and regionally and that is why the plans for a reinforced main grid include both domestic implementation measures and interconnector capacity to other countries. An increase in the generation of renewable energy will further increase variations in the grid power system between years with low precipitation and years with high precipitation; this requires an increase in the exchange capacity between Tanzania and other countries, both to secure access to energy in dry years, and ability to export surplus power during wet years.

c) Reliable grid creates value,

The government will facilitate value creation by securing the necessary transmission capacity domestically, delivering power to the growing number of newly established enterprises, as well as facilitating increased power exchange internationally. Generally, in the entire country, the load forecast show that there will be high growth of power demand mainly due to increase of industrial activities and in addition to that, the gas and coal discoveries made in recent years, will lead to higher levels of energy consumption, for example, the Mtwara EPZ alone will require not less than 200MW by 2016. It is anticipated that the next generation main grid will comprise stronger connections between all regions, and contribute to more uniform electricity prices across the country during normal situations. This will provide producers and consumers alike with improved predictability, and facilitate value creation all over Tanzania.

d) The future of Tanzania is electric,

The government's policy is to attain electrification rate of 78% of its people by year 2035. In addition to that, the expectation in the long term is that the transport sector will be extensively electrified and industrial sector will grow up, in order to be able to facilitate these objectives; sufficient grid capacity must be developed.

Transmission planning criteria

The planning of the transmission grid considers the operation of a power system under two possible situations, that is:

Normal operating conditions (N-0). The transmission infrastructure is entirely available (no equipment has been forced out of service).

Contingency operating conditions (N-1). The main principal is that the main grid will be operated and scheduled based on the so called **N-1 criterion.** This means that under normal system conditions a fault in one single component (say line, transformer or VAr compensator) will have no influence on the general power supply. This criterion establishes security of supply as a stronger driving force in grid development. In this chapter, the study has set as target to rectify all known breaches of the planning criteria by 2035. The deadline has been predetermined to ensure that we also have the capacity to carry out investment projects related to additional priorities, therefore only outages of equipment rated at 220 kV or above will be considered under the N-1 criteria.

System operations challenges

The following challenges have, from our experience, proved to be one of the causes for the delay in implementing various investment projects. Hence while we prepare ourselves to implement the transmission plan, we should also prepare ourselves to solve or avoid them.

a) Accumulated reinvestment requirements,

Large sections of the existing grid face significant reinvestment requirements, both due to age and to ensure sufficient preparedness. This Transmission plan has prepared a long-term reinvestment schedule, which significantly increases the amount of reinvestments in the coming decade leading up to 2035. Unless specials efforts are made to secure sufficient financing, this will have consequences for the implementation of investment projects than it is assumed today.

b) Prolonged project preparation procedures

Experience from the implementation of projects that were proposed in previous Master Plans has proved to be particularly resource demanding and long-lasting. The time spent to clarify various issues has increased significantly and includes approval of environment and securing project funds. This has led to an increased use of resources and delays in the construction phase, and ties up resources that were, in a greater extent, planned for other projects and have caused delays in these.

Development of new interconnectors

Transmission capacity to other countries is an integrated and important part of a main grid that facilitates new renewable power generation and ensures security of supply domestically. It is necessary to increase the exchange capacity with other countries, both to ensure access to power in dry years and to ensure trade of surplus power in years with high precipitation. The results from the operational experience in recent years lead to necessary adjustments of the plans for establishing new interconnectors in the coming ten-year period. The countries project portfolio for interconnectors comprises six potential projects:

The new 400kV interconnector to Kenya, currently undergoing preparation phase, is scheduled for entering into operation in 2016. The connection point in the Grid is Singida. Tanzania is planning another connection to Zambia with a line voltage of 400kV, currently undergoing preparation phase is on schedule for entering operation in 2016 and the connection point in the Grid is Mbeya. Uganda and Tanzania are planning for the 220kV Masaka (Uganda) - Mwanza (Tanzania) interconnector, it is scheduled for operation by 2015.

Tanzania is also planning a new connection to Mozambique with a capacity of 220kV; currently efforts to initiate discussions with the Mozambican counterparts are underway. Tanzania, Rwanda and Burundi are planning a 90MW hydro power plant project at Rusumo border with Rwanda and Burundi, the project will enable the National grids of the three countries be interconnected through 220kV transmission line by 2016. The last one involves Tanzania and Malawi, a total of 340MW hydro power plant project at Songwe border is planned, the project will enable the National grids of the through 220kV transmission line by 2016.

Costs

The government expects that investments in the coming ten year period will amount to 3.708 billion United States dollars (US\$). These costs will be covered by the customers through an increase in cost reflective grid tariffs.

Short and Medium term Prioritized transmission projects Priotised Projects

Measure	Description	Timing
132KV/ Ubungo - Mtoni	New Overhead line that strengthens security of supply and connection of Marine	Linder procurement of Contractor
Interconnector	coble to Tanzania Island	Expected to be commissioned in 2013
220KV Somangafungu to Kinverezi	198 km new Overhead line that strengthens security of supply of nower to the	Expected to be commissioned in 2015
22010 Comangaranga to Rinyerezi	South Eastern tanzania and connection of 8MW/ tanasco nower Plant and	Planned to be commissioned on 2014
	planned 320 MW Somanga Fungu power planed	
220KV Ubungo - Kinverezi	15 km new over head line that strengthens security of supply and connecting	
	planned power plants at Kinverezi	Planned to be commissioned on 2014
220KV Mlandizi - Zinga	15 km new over head line that strengthens security of supply and connecting	
Ũ	planned power plants at Zinga	Planned to be commissioned on 2015
400KV Iringa – Shinyanga	647 km new Overhead line that strengthens security of supply of power to the	Under procurement of Contractor.
	central and west and norhern Tanzania	Expected to be commissioned in 2015
220KV Makambako – Songea	250 km new Overhead line that strengthens security of supplyto the Southern	Under procurement. Expected to be
	Tanzania	commissioned on 2015
220KV Bulyanhulu – Geita	150 km new Overhead line that strengthens security of supply and connect	Planned to be commissioned on 2015
	offgrid part in North west Tanzania	
220KV Geita - Nyakanazi	133 km new Overhead line that strengthens security of supply and connect	Planned to be commissioned on 2015
	offgrid part in North west Tanzania	
220KV Nyakanazi – Kigoma	280 km new Overhead line that strengthens security of supply and connect off	Planned to be commissioned on 2015
220K)/ Masaka Mwanza	grid part in North west Tanzania	
220KV Masaka-Wwanza	250 km new Overnead line that strengthens security of supply and connect on	Planned to be commissioned on 2015
220KV Wind Project to Singida	10 km new Overhead line that strengthens security of supply and that will be	
220RV WIND Froject to Singida	linked with great volumes of wind power in Singida Region	Planned to be commissioned on 2016
400KV Tanzania -Kenya	414.4 km new Overhead line that strengthens security of supply that will facilitate	
Interconnection (Tanzania Part)	interconnection, and facilitate trade among FAPP	The project is under securing the fund and
		planned to be commissioned in 2016
400KV Kiwira – Mbeva	100 km new Overhead line that strengthens security of supply and that will be	
	linked with great volumes of coal power plant in Kiwira	Planned to be commissioned on 2016
400KV Mbeya – Iringa	350 km new Overhead line that strengthens security of supply that will facilitate	Discondute has a service in a day 2010
	interconnection and facilitate trade among SAPP	Planned to be commissioned on 2016
220KV Solar I Project to Dodoma	10 km new Overhead line that strengthens security of supply and that will be	Planned to be commissioned on 2016
	linked with great volumes of Solar power in Dodoma Region	Flarined to be commissioned on 2010
400KV Coastal Coal to Tanga	10 km new Overhead line that strengthens security of supply and that will be	Planned to be commissioned on 2016
	linked with great volumes of coal power plant in Tanga	
400KV Dar es Salaam-Chalinze-	682 km new Overhead line that strengthens security of supply of power to the	Planned to be commissioned on 2016
Same - Tanga-Arusha	North East of Tanzania	
132KV Factory Zone III to Factory	The existing connection to the factory Zone will be upgraded to increase the	Discondute has a service in a day 2010
Zone II	security of supply and to facilitate the security supply to the industrial area in Dar	Planned to be commissioned on 2016
122KV/ Eastery Zone II to Mhagala	es salaam	
132KV Factory Zone II to Mbagala	The existing connection to the woagata will be upgraded to increase the security	Blanned to be commissioned on 2016
	of supply and to facilitate the security supply to the supply to mbagala	Flanned to be commissioned on 2016
132KV Mbagala to Kurasini	The existing connection to the Kurasini will be upgraded and linked to Mhagala to	
Tozity inbugula to reardshir	increase the security of supply and to facilitate the security supply to the supply to	Planned to be commissioned on 2016
	kurasini	
132KV Kurasini to Ubungo	The existing connection to the Kurasini will be upgradedand linked to Mbagala to	
· · - · · · · · · · · · · · · · · · · ·	increase the security of supply and to facilitate the security supply to the supply to	Planned to be commissioned on 2016
	kurasini	
220KV Nyakanazi to Mbeya	The existing connection to the Kurasini will be upgradedand linked to Mbagala to	
	increase the security of supply and to facilitate the security supply to the supply to	Planned to be commissioned on 2017
	kurasini	
400KV Dar es Salaam-Morogoro-	451 km new Overhead line that strengthens security of supply and connect off	
Dodoma	grid part in North west Tanzania and linking with the South West Tanzania	Planned to be commissioned on 2017
400 KV Ngaka to Makambako	200 km new Overhead line that strengthens security of supply and that will be	Planned to be commissioned on 2017
	linked with great volumes of Ngaka power plant to Makambako	
220KV Somanga -Lindi_Mtwara	154 km new Overhead line that strengthens security of supply of power to the	Discondute has a service in a day 0047
	South Eastern Tanzania and linking the Off grid part in South Eastern Tanzania.	Planned to be commissioned on 2017
220KV/ Nyakanazi Rusuma	05 km now Overhead line that strengthens security of supply and connecting	
2201 V NYANAHAZI - RUSUIIIO	nower plant at Rusumo	Planned to be commissioned on 2018
220KV Solar II Project to	10 km new Overhead line that strengthens security of supply and that will be	
Shinyanga	linked with great volumes of Solar power in Shinyanga Region	Planned to be commissioned on 2018
220KV Kigoma to Sumbawanga	485 km new Overhead line that strengthens security of supply and connect off	
5 5 5	grid part in Kigoma nad Sumbawanga	Planned to be commissioned on 2018

Priotised Projects Continue							
Measure	Description	Timing					
330KV Pensulo – Mbeya	100 km new Overhead line that strengthens security of supply that will facilitate interconnection and facilitate trade among SAPP	Planned to be commissioned on 2018					
400KV Mchuchuma – Mufindi	200 km new Overhead line that strengthens security of supply and that will be linked with great volumes of power plant to Mufindi	Planned to be commissioned on 2018					
132KV Musoma – Nyamongo	100 km new Overhead line that strengthens security of supply	Planned to be commissioned on 2018					
220KV Masigira – Makambako	180 km new Overhead line that strengthens security of supply and that will be linked with great volumes of 118 MW Masigira power plant to Makambako	Planned to be commissioned on 2019					
400KV Rumakali – Mbeya	150 km new Overhead line that strengthens security of supply and that will be linked with great volumes of Mchuchuma power planst to Mbeya	Planned to be commissioned on 2020					
400KV Rumakali – Makambako	200 km new Overhead line that strengthens security of supply and that will be linked with great volumes of Mchuchuma power planst to Makambako	Planned to be commissioned on 2020					
220KV Mtwara to Songea	656 km new Overhead line that strengthens security of supply and that will be linking the southern part to the national grid	Planned to be commissioned on 2021					

A successful 2012 Grid Development Plan, through on time implementation of the recommended projects in years leading up to 2035, will strengthen Tanzania's grid infrastructure, and thus safeguard the "backbone" of the power system. With this in mind, the Grid network will appear as shown on the single line diagram below:

Figure 4- 2: Load Flow

DISTRIBUTION SYSTEM PLANNING

a) Purpose and aim of electricity distribution network planning and expansion

The Power System Master Plan objective seeks to promote efficient operation and investment in the electricity sector for the long term interest of consumers from the perspective of reliability, price, safety and quality of electricity services. The electricity network infrastructure plays a critical role in delivering services to consumers and driving efficient and competitive outcomes in the wholesale (Zanzibar) and retail segments of the market. Unreliable infrastructure which does not meet the needs of the community will have significant adverse effects on the public and the economy as a whole. An appropriate planning process is essential to ensure ongoing efficient and reliable supply of electricity.

b) Existing Distribution System

The distribution system network voltages are 33kV and 11kV which serve as the distribution back-bone stepped-down by distribution transformers to 400/230 volts for residential, light commercial and light industrial supply. Heavy industries are supplied at 11 kV and 33 kV. By December 2012, there are more than 1,037,859 customers linked by these distribution lines in which 335,322 are in Domestic Low Usage Tariff (D1), 700,048 are in General usage Tariff (T1), 2,096 are in Low voltage maximum Demand (MD) usage tariff (T2), 391 are in High Voltage Maximum Demand (MD) usage tariff (T3), 1 as the Bulk sales to Zanzibar (T5), 1 as the Bulk Sales to Kahama mining (T8). The total length of the 33kV lines is 12,602 km, an 11kV line is 6,392 km and a 400/230 Volts lines is 26,565km. Total number of transformers in distribution system is more than 12,000. All of these facilities were critically in poor condition, to date, distribution networks (including 33 & 11kV, LV lines and distribution substations) in Dar es Salaam, Kilimanjaro and Arusha are being rehabilitated and reinforced under the TEDAP project. In other regions, rehabilitation initiatives by Finland and AFDB's Electricity V project are also playing a great role in restoring the distribution system and new network extensions are also being carried out where it is appropriate. In other 7 regions the same activities are being carried out under the MCC project. On the other hand, though with its limited resources, TANESCO under its routine activity programs carries out planned and unplanned maintenance works on the distribution system.

c) System Losses

Despite the above efforts, there are still high energy losses in transmission and distribution system. This alarming situation called for a need to have a study to identify the problem areas and their causes so as to take the necessary actions to minimize the losses. A study was commissioned in 2010 by Millennium Challenge Account – Tanzania to carry out a technical and commercial loss-reduction study of the transmission and distribution of electrical power system. The loss rates derived are summarized in table below:

System Level	Losses
Transmission	5.3%
Distribution	8.1%
Total Technical	13.4%
Commercial	11.6%
Total	25.0%

NB: By 2012, the loss level was 20.65% and the target by 2015 is 18%

d) Specific Remedial Measures

The most efficient way to improve technical loss performance on both the transmission and distribution networks is to amend the processes for network development to build efficiency into the networks through normal network development. This takes time to produce results.

(4.1) Transmission Network

There are four transmission reinforcement projects proposed to be commissioned by year 2015 that will definitely improve the transmission technical losses to the allowable loss level. These projects include the 400 kV Grid Backbone (Iringa to Shinyanga), 400 Kv Dar es Salaam – Chalinze – Tanga – Arusha, 400 kV Iringa – Mbeya, and 400 kV Dar es Salaam – Morogoro – Dodoma. The higher voltage level of 400 kV will transfer more power with less losses compared to the existing 220kV network.

(4.2) Distribution Network

To achieve significant technical loss reduction in the short term additionally requires a specific program of remedial measures targeting the most problematic networks. The program is proposed to start from year 2013 to 2015 with an objective to minimize energy losses from a level of 20.65% to the acceptable level of 18%. These measures including the respective associated costs and loss savings (for distribution network) are summarized as follows:

No.	Problematic Areas	Remedies	Associated costs (US\$ Million)	Loss Savings (US\$ Million)
		Power factor correction with capacitor installation.		
		11to 33kV voltage conversion for heavily loaded 11kV lines	_	
1	11kV Networks	Install fixed capacitors	39.7	163.4
		Construction of new feeders	_	
		Construction of new substation		
0		> New MV/LV transformers to relieve heavily loaded LV networks.	00.0	100.0
2	LV Networks	Reconductoring the heavier loaded sections of the feeder.	20.0	120.8
	Commercial losses	Sensitize the community on electricity theft		
3	(K'Njaro, Arusha,	Give incentives to whistle blowers	3.6	32.05
	Tanga, Dar & Mbeya)	 Enforce legal measures 		
	Losses caused by	Sensitize the community on the effect that will be caused by		
	Vandalism (K'Njaro,	demaging infrastructures and equipments	2.0	20.05
4	Arusha, Tanga, Dar &	 Give incentives to whistle blowers 	3.0	32.05
	Mbeya)	Enforce legal measures		
	Tot	al Costs for years 2013, 2014 and 2015	75.7	
	Tota	I Savings for years 2013, 2014 and 2015		348.3

CHAPTER 5

ECONOMIC AND FINANCIAL ANALYSIS

Introduction

This chapter spells out the required cost to implement the proposed power expansion plan in the 2012 PSMP Update. The modality of implementing the identified projects in this Plan can either be public, private or public private partnership (PPP). The role of the Government in this respect will be to mobilise financial resources to implement some of the earmarked projects and to create conducive environment of attracting investors in the power sector. In additional, it also analyse economics of interconnecting the isolated load centres as well as estimating long run marginal cost.

The main assumptions used in this analysis include; discount rate of 10 percent based on the World Bank SSEA study for the East Africa region of 2006; debt equity ratio of 70:30 which is a standard ratio preferred by most financiers/banks; interest rate of 7 percent was used to represent average cost of debt in Tanzania. Since most of the costs in electricity projects are based in US dollar, inflation rate of 2.5 percent per year has been assumed, which is in line with USA CPI index. Interest during construction was also considered to add cost to the overall capital expenditure.

Financial Analysis

The financing requirement to implement the PSMP in the short run (2013 - 2017) is about US\$ 11.4 billion, the breakdown of which is indicated in **Table 5.1 and 5.2** below.

Table 5-1: Short Term Financing Requirement (2013 – 2017)2

Investments	Installed	Planned On-	2012	2013	2014	2015	2016	2017	Project
Mwanza MSD		2013	80						80
Kinverezi I	150	2010	00	188					188
Somanga Eungu II (CC 320)	210&110	2014 & 16		135	91	84	55		365
Mufindi Cogen	30	2015	21	14	6	01	00		41
Sao Hill Cogen	10	2015	2	8	6				16
Kinverezi II	240	2015	-	259	173				432
	225	2015		138	138				276
MKURANGA	250	2015		100	100				200
Kiwira - 1	200	2017		62	123	123	103		410
Coastal Coal - I	300	2017		215	431	431	359		1.435
Wind I	50	2016		19	62	44			125
Ngaka Coal - Phase I	200	2017		71	143	143	119		476
SOLAR- 1	60	2016		43	144	101			289
Stiegler's Phase-1	300	2023		38	66	38	66	66	272
Kinyerezi III	300	2016			214	143			357
Wind II	50	2017			19	62	44		125
Mchuchuma - I	300	2018			115	231	231	192	769
Kiwira II	200	2018			62	123	123	103	410
Rusumo Hydro	27	2018			6	28	45	34	113
Ruhuji Hydro	358	2021			49	85	98	244	476
Mtwara 400	400	2017				289	192		481
Mchuchuma II	400	2018				32	95	32	159
Mchuchuma III	400	2018				32	95	32	159
SOLAR- II	60	2018				43	144	101	289
Kakono Hydro	53	2019				5	24	39	68
Mpanga Hydro	144	2022				11	22	25	58
Ngaka Coal - Phase II	200	2019					71	143	214
Malagarasi	45	2020					8	38	46
Rumakali Hydro	520	2025					30	52	81
Generation Investments			103	1,290	1,947	2,046	1,923	1,099	8,409
Transmission investments				161	161	161	161	161	806
Total Investments			103	1 452	2 108	2 208	2 084	1 260	9 215
Cum. Investments			103	1,555	3,663	5,871	7,955	9,215	9,215
Financing				•	•	•			
Debt		70%	72	1 016	1 476	1 545	1 450	882	6 451
Equity		30%	21	1,010	1,470	662	625	379	2 765
Equity		50 /0	31	400	000	002	023	510	2,103

Source: Team Compilation

Table 5-2: Summary of short term financing requirement (2013 -2017)

Investments	Installed Capacity MW	Planned On- Line Year	2012	2013	2014	2015	2016	2017	Total
Generation Investments			103	1,290	1,947	2,046	1,923	1,099	8,409
Transmission Investments				161	161	161	161	161	806
Distribution Investments			25	348	506	530	500	302	2,212
Total Investments			128	1,800	2,615	2,737	2,584	1,563	11,427
Cum. Investments			128	1,928	4,542	7,280	9,864	11,427	11,427
Financing									
Debt		70%	89	1,260	1,830	1,916	1,809	1,094	7,999
Equity		30%	38	540	784	821	775	469	3,428

 2 Project cost marked with red color are partial cost since construction of these projects goes beyond 2017

The breakdown of the total capital expenditures, inflation and interest during construction for generation and transmission plan over the period 2011 to 2035 is given in the table below.

Cost Item	(Mill. USD)	(Mill. USD)	(%)	(%)
1 Capital Costs without Inflation and IDC				
Generation	17,518		63.3	42.8
Transmission	3,708		13.4	9.1
Distribution	6,460		23.3	15.8
Total Capital Cost (excl. Inflation & IDC)	27,687		100.0	67.7
	(Mill. USD)	(Mill. USD)	(Mill. USD)	
2 Capital Costs with Inflation		(Inflation)		
Generation	17,518	8,221	25,740	
Transmission	3,708	1,414	5,122	
Distribution	6,460	1,693	8,153	
Inflation		11,329		27.7
Total Capital Cost (incl. Inflation)			39,015	
3) Capital Costs with Interest During Construction				
Interest During Construction			1,903	4.9
Total Capital Costs (incl Infl & IDC)			40,919	100.2

Table 5-3: Breakdown of Capital Costs

Based on annual inflation of 2.5%, the overall capital costs will increase by 11,329 million dollars, an increase of 40.9%. Similarly, the Interest During Construction (IDC) for the generation, transmission and distribution over the period 2011 to 2035 amounts to 1,903 million USD, which increases the overall cost of the capital expenditures by 6.9%.

Impact of financing of capital expenditures

The financing of capital expenditures is given in **Table 5.4** and is based on the 70% debt and 30% equity financing of the draw-downs for capital expenditures. The IDC is based on the interest rate of 7% for new loans and the assumptions made on capitalizing the capital works in progress.

Table 5-4: Breakdown of overall financing requirements for capital costs

Capital Costs and Financing Items	(Mill. USD)	(%)
Total Capital Cost without IDC	39,015	
1 Drawdowns for Financing Capital Expenditures		
Debt financed	27,311	70.0
Equity financed	11,705	30.0
Total Financing without IDC	39,015	100.0
2) Overall Financing including IDC		
IDC	1,903	71.4
Total Debt (Drawdown +IDC)	29,214	28.6
Equity	11,705	100.0
Total Financing including IDC	40,919	

Source: Team Compilation

The IDC is added to the debt principal and results in increase in total debt. The increase in debt is marginal since it is the IDC over the study period. At the same time as the IDC is accumulating, the overall debt portion decreases during the study period since the principal including previous accumulated IDC is also being repaid.

Long run marginal cost

The long run marginal cost of power in Tanzania was calculated on a year-by-year basis by examining the incremental cost over the base year. This approach is closer to the strict definition of long run marginal cost. The development of the capital and operating costs, average annual energy generated by the new plan additions and the energy transmitted is based on same approach as the original 2008 PSMP study and its subsequent 2009 Update study. From the analyses, the unit cost of generation, transmission and distribution are calculated for each year. These are presented in **Table 5-5**:

	Marginal	Marginal	Marginal	Marginal
	cost	cost	cost	cost
	Productio	Transmiss	Distribution	of supply
	n	ion		
Period	(US	(US	(US	(US
	Cents/k	Cents/kW	Cents/kWh)	Cents/kWh)
	Wh)	h)		
2013 to 2020	14.6	1.3	2.8	18.1
2021 to2036	5.9	0.6	2.8	8.7
2013 to 2036	9.1	0.8	2.8	12.1

Table 5-4: Marginal cost (\$ per kWh)

Source: Team Computation

It should be noted that the marginal costs of production, transmission and distribution cannot simply be added to result in the overall cost of supply since there are transmission losses of 5 % as well as distribution losses of about 20%. The marginal cost of supply is higher than other marginal costs because the marginal costs of generation and transmission are applied across a much smaller amount of energy at the distribution level.

Economics of interconnecting the isolated regions

The results from the economic analysis for varying loads and with distances of 200 to 500 km were analyzed via a model. The model was used to look at loads from 1MW to 35 MW. These show that to connect a 5MW load, the load should be within less than 100 km of the transmission system. This model was used for all isolated loads. The table below **Error! Reference source not found.** presents for the isolated load centres, the distance from the grid, the minimum economic load in MW and the load in 2010. The table also presents the year in which the load would be of sufficient size to make it feasible for connecting to the Tanzanian grid.

Table 5-5: Isolated Load Centers & Feasibility of Connection to the Tanzania Grid

Isolated Load Centre	Distance from grid (km)	Economic minimum load (MW)	Load in 2010 (MW)	Load in 2035 (MW)	Time for grid connection
Kagera	220	10	11.4	383	Now
Mtwara	353	15	10.2	271	2013
Rukwa	340	15	5.8	134	2015
Kigoma	280	10	5.4	184	2014
Lindi	353	15	1.2	179	2013

Source: Team Compilation

This analysis shows that the Government can initiate plans for the connection of all of these isolated load centres. In terms of priorities, the Kagera centres would provide the best economic return, followed by Mtwara. On economic point of view Lindi would be connected by 2015 but technically Mtwara and Lindi could be connected at the same time as early as 2013.

CHAPTER 6

CONCLUSION AND POLICY RECOMMENDATIONS

Conclusion

Discovery of new mineral deposits such as gold, nickel, natural gas, initial development of coal resources and uranium; and mushrooming of economic activities (construction, processing industries, and others) are changing the structure of Tanzania's economy. All these have effect on the electricity supply and demand in the country.

Despite the endowment of enormous resources for power generation, some challenges exists including mobilization of adequate financial resources to implement the proposed power projects and inadequate requisite human resources skills and knowledge for developing the existing power resources. Other general challenge especially in the preparations of this Plan is related to data issue. Some Most data and information was found to be inconsistency and outdated. Some of the identified projects have not been studied to feasibility level while others have outdated feasibility study reports, thus render it difficult to make meaningful decision on the project implementation. Furthermore, most genearation resources are located in the south-west part of the country while huge loads are located in the north-west of the country, implying the need for long transmission lines.

This Plan suggests countermeasures to address power shortage in the short, medium and long term. While the short-term plan requires immediate decision and actions, the mid – to longer terms plan require coordinated planning, project development studies to ensure that future electricity supply utilises the least cost projects, consistent with sound planning criteria and addresses national interests. In view of the above, the country will need a total of 3,400MW in the medium term (2013-2017) and 8,990MW by 2035 that will require financing to the tune of USD 11.4 billion and USD 27.7 billion in those two periods respectively. When inflation and interest during construction are added total investment required rises to USD 40.9 in the long run. Of this amount, about two third of it is for generation.

The following are recommendations for successful implementation of the PSMP 2012 updates.

General Recommendations

- a) For a sustainable development of power sector, there is a need to firm up project implementation schedule as proposed by PSMP particularly those which have element of PPP and IPP arrangements;
- b) There is a need to ensure that strategic power projects are studied to full feasibility level to reduce project implementation lead time and cost;

- c) To speed up feasibility studies for coal and geothermal power projects, there is need to enhance capacity of Geological Survey of Tanzania (GST) to carry out detailed geological exploration to identify location of all coal and geothermal resources;
- d) There is a need to create conducive environment for development of renewable power projects (Wind, geothermal, Solar, and Biomass) to supplement exhaustible resources;
- e) Coal, Geothermal and Nuclear Policies should be prepared to guide the utilization of these resources for power generation;
- f) To ensure effective implementation of PSMP 2012 updates, the Government may need to establish a monitoring and evaluation unit; and
- g) Capacity building: In order to internalise and broaden up experts of formulating plan of this nature and improve local expertise, the government needs to maintain and retain the core team that involved in the preparation of this plan. More capacity is required to enhance the process of formulate/ review/update of PSMP. There is a need to have modern software, tools to improve the level of projections. This will include training of the core team, procuring of the modelling packages (Stata, etc) and sharing leaf of experience with institutions involved in related planning works.

Specific Recommendations

A. Load Forecast

- i. The current level of energy losses is high; more efforts are needed to scale down energy loss from 25% to 15.8% as forecasted. The projected loss level by 2035 is synonymous to semi-industrialised countries.
- ii. Implement Demand Side Management programmes to defer investment in additional generation.

B. Generation

- i. In order to avoid power shortages, projects earmarked for implementation in the short term (2013 2017) should be strictly adhered to as there is no room to manoeuvre.
- ii. Two hydro options will require removal on significant obstacles before becoming firm candidates for implementation:
 - **Songwe project** is a multipurpose project located on the border between Tanzania and Malawi, its development will involve trade-offs between two countries and various competing uses of the water resource. It is necessary to initiate joint discussions on the best way to develop the project.
 - The Stiegler's Gorge option is located within the Selous Game Reserve; its development is constrained by the Algiers Conventions which defines the developments possibilities within national parks and game reserves. It is therefore important to redefine the game reserve borders.

C. Transmission requirements

- i. Continue implementation of earmarked Transmission lines projects parallel with generation projects to ensure power evacuation.
- ii. Reinforce distribution network to meet electrification targets.

D. Financial and Economic Perspective

- a) Implementation of this plan requires huge financial resources. Concerted efforts to be exercised in mobilizing required financing for both power generation, transmission and distribution;
- b) The Government should continue with efforts to invest in power infrastructure to meet long term power demand and at the same time create conducive environment to attract private investment in the power sector; and
- c) The isolated centres should be connected to the main grid as soon as it is feasible.

